
Introducing Nirvana’s New Deep Learning Block for OmniTrader®
As presented by Steve Mayo, data scientist and long-time Nirvana customer

Twenty years ago, Nirvana System’s pioneering ARM technology accelerated OmniTrader’s rise
to become the preeminent platform for advanced algorithmic trading. In their latest moonshot,
Nirvana has now amplified its technological advantage with the launch of a next-generation
ARM tool which will improve their existing technical-trading strategies and even allow users to
employ this astronomical advance in building their own. Exalting superlatives exhausted, let’s
board this rocket and explore Nirvana’s new Deep Learning strategy block.

Learning the Lingo

For this discussion, blue text indicates ML lingo, should you want to learn more;
orange indicates Nirvana-specific terminology or labels used in the DL block.

Machine learning (ML) refers to programming algorithms
employing high-level calculus, linear algebra, and statistics to
analyze and draw inferences from a set of data. ML can
identify unseen patterns and relationships that other data
processing approaches cannot. Euphemistically, we call these
sophisticated algorithms Artificial Intelligence (AI) but, so far
anyway, AI is not capable of independent thought, arguably a
good thing! Deep Learning refers to newer ML architectures
that, given enough time and computing power, can learn complex nonlinear relationships in
huge datasets having seemingly infinite permutations. Think spaceships and stocks here!

One promising branch of Deep Learning, Neural Networks (NN), are modeled on the human
brain. NN’s are organized into nodes and internodal connections, like neurons with their
interconnecting dendrites. In ML, a node conceptualizes the processing of a signal, and the
connectors abstract how signals are passed from node to node across a network.

Nodes are organized into layers with each node in a layer
connecting with every node in the following layer. Connections
have coefficients, called weights, that amplify or dampen signal
transmission. During each iteration through the network, called
an epoch, these weights are adjusted such that the network
essentially learns how to best respond to incoming data, like
how the nervous system learns to respond to sensory stimuli.

Nirvana’s Deep Learning block (DL) uses an NN architecture called a Multilayer Perceptron
(MLP), a type of feedforward neural network. Feedforward means that information only travels
in one direction through the network (i.e., no loops), starting from an Input Layer, through one
or more processing layers, called Hidden Layers as their internal values are not exposed, and
finally to the Output Layer. The number of nodes in each layer is configurable.

To make inferences about the future, an NN algorithm be trained using a set of calculations
called features that it can use to derive numeric observations (samples) about its environment.
Nirvana allows you to enter these calculations as OmniScript and calls them inputs. For a

trading system, features are historic timeseries price and volume metrics for stocks, futures, or
cryptocurrencies and derivatives thereof such as indicators. Potential other features might
include fundamentals, macroeconomic data, search history, chat mentions, news, and
consumer sentiment, if you can get such alternative data at a reasonable cost.

The NN algorithm must be run for dozens or even hundreds of epochs. The more observations
you provide and the more epochs you run, the more likely the NN will be able to learn
something useful. But, as you might expect, more means longer run times and the need for
greater computing power. Also, in accordance with the ole garbage-in/garbage-out adage, the
quality of the observations and how they is preprocessed is very important, as are the NN’s
configurable settings, called Hyperparameters.

An NN is classified as a Supervised Learning system because, while training, in addition to a
table of observations usually labelled X1…Xn, the algorithm needs a corresponding column of
expected output values, usually labelled as Y. With OmniTrader we have access to large
amounts of historic trade data and can easily calculate what the system should learn from it.

Essentially, an NN is a giant multiple regression, the ole Y = b + W1X1 + W2X2 + … WnXn equation
from basic statistics, but non-linear and without the extreme curve fit. After training, you can
give an NN a new row of X’s, say today’s prices, but now without the Y you want it to predict.

How does an MLP Learn?

During each epoch, the set of observations (X’s) for a time increment are passed by the input
nodes to the first processing layer. Based on the weights, and what is called a non-linear
Activation or Transfer Function, some nodes in a processing layer will get activated and pass
their signals to nodes in the next layer; conversely, other nodes may block their signals.

The activation function maps
inputs to an s-shaped curve
that squashes the signal’s
dimension. Often, it is a
Hyperbolic Tangent (Tanh)
function that forces signal
values to between -1 and 1.
Or, you can use the Sigmoid (logistic) function which is similar but forces the signal to between
0 and 1. ReLU is a popular newer function that may be added to the DL in a future update; in
theory, ReLU avoids the situation where an NN stops learning
after it gets stuck at a saddle point, i.e., where the curves are
changing direction.

With each iteration, a methodology called backpropagation is
used to adjust the weights with the goal of minimizing the error
between what the network calculated as the predicted output
and the true Y value. Technically, an NN checks the error on
every output node, however the DL block needs only one. We say that an ML model is in
convergence when the loss has been minimized, or at least when it is close to minimum.

TanH, Sigmoid and ReLU Activation Functions

This predicted-vs-actual comparison is based on a
calculation called Mean Square Error (MSE). It
resembles how a spreadsheet calculates a best-fit
regression: a line is randomly plotted through the
datapoints, then the distance between each point and
this line is measured and squared and summed across
the points to get the error rate. The line is then
adjusted a bit, and the process repeats until the error is
minimized. In Nirvana’s DL module, the MSE is inverted
and graphed as the Certainty percentage.

In an NN as in many other ML architectures, that increment-of-adjustment between epochs
usually employs an optimization algorithm called Gradient Descent configured via the Learning
Rate hyperparameter. Basically, this means that early adjustments are bigger than later ones as
the error rate approaches its minimum. Nirvana politely
hides this complexity but still allows the user to select
between an Adaptive Learning Rate, with a specified
momentum that employs gradient descent, or a Constant
Learning Rate with a user-specified increment.

An Example Manual Calculation

To expand upon this explanation, let’s manually calculate a single node. In the accompanying
node diagram, X1 and X2 are the observations, W1 and W2 are the associated weights, Z holds
the weighted input variable, b (bias) is the y-intercept which we

will assume is zero, (Z) holds the sigmoid activation variable, and
Y is the resulting signal that will be sent to the next layer.

Let’s assume we are analyzing a single stock, say with RSI(14) and
MACD(12,26) as inputs. A requirement of any well-designed NN is that the inputs need to be
scaled so they are comparable across the X columns. The DL block scales automatically but
here, I have manually scaled my fictious inputs to between 0 and 1 using the min-max scaler
equation: (x – min(x)) / (max(x) – min(x)). The calculation of single epoch is shown in this table.

X1
RSI

X2
MACD

W1 W2 Weighted Input Formula
z = X1W1 + X2W2 + b

Sigmoid Activation Formula

(z) = 1/(1+exp-Z)

Passed
Signal

0.1 0.3 0.6 0.2 Z = 0.1 * 0.6 + 0.3 * 0.2 + 0 = 0.12 (Z) = 1/(1+exp-0.12) = 0.530 0.530

In an actual MLP, there would be more of these nodes, each doing a similar calculation. Using
math too complex to explain here, backpropagation and gradient descent optimization are next
used to update the weights and bias across all the nodes to finish the epoch. The process
repeats until a minimum error (or maximum certainty in the DL) is reached. More correctly, the
cycle repeats until Convergence is achieved, which we’ll discuss momentarily.

Application to an Algorithmic Trading System

Taking this example further, let’s consider how this process is implemented in a trading system.
First, as mentioned above, we need to compare the final output to the actual Y values that the
MLP precomputed for our dataset. This gives us the MSE for performing the optimization
process, which Nirvana inverts and graphs as Certainty. The network output is labeled with Ŷ
and called Yhat; in statistics, a circumflex (the hat) above a variable indicates a predicted value.

X1
RSI

X2
MACD

Output
Yhat

True
Y

MSE

0.7 0.1 0.450 0.540 0.0912

Second, what we are really after here is a trade marker, something that can be graphed as a
buy/sell chevron. Thankfully, Nirvana does this tedious conversion for us in the background. In
the DL block, we simply specify our desired Target Measurement Calculation, say Profit-Per-
Trade (PPT), as well as a Target, say the exit defined by the strategy’s trade plan or a fixed
number of bars. Based on these settings, the Yhat values will be translated into a Score and
used to plot a buy or sell marker on the stock graph. Over a series of bars, scores will span a
range, with a high and low value. We’ll see this when we get to Input Pruning.

Having summarized the underlying technology, what follows now is a near-exhaustive overview of how to configure the DL
Block, with a few suggested best practices. The red circles in the text map back to the interface screenshots at the article’s end.

Using the DL Block Within a Strategy

In the Strategy editor, the DL can be the first block and thereby used as a signal generator.
Minimally, this option requires a TradePlan block, but you can always add other downstream
blocks to your strategy such as the Vote and Filter blocks.

Alternatively, the DL block can be used as a filter. The DL block works remarkably well in this
configuration, even with lower Certainty levels. In testing, adding a DL block as a filter improves
most strategies but be sure to run a few tests as it could cause the strategy to be overfit.

Best Practice: As always when developing a strategy, you should use a backtest and forwardtest
to evaluate the generalizability of your strategy for the given list, then test other similar lists
and/or alternative date ranges to see if the performance is reasonably consistent. The DL block
will use only the backtest data for building the network. Before going live, you will want to drop
the backtest and run the final DL over the full set of data, just DON’T continue to tweak with
the forwardtest data – that’s an insidious bias and likely to result in non-generalizability.

Moving forward, as market conditions change, the DL block may require periodic retraining. If
you are using dynamic networks, OmniTrader will periodically set the DL to retrain when you
run the ToDo list. Again, avoid the wicked temptation to tweak in the forwardtest!

The Target Settings

The Calculation toggle lets you pick from several options for how the DL block will generate the
Y output values and essentially what will be the loss function to be optimized.

• Profit per Trade – the average percentage return per trade.

• APR – The overall annualized percentage return.

• Direction –the exit price being up or down relative to the entry price, regardless of return.

• Signal to Noise Ratio – the ratio of desired signal relative to the statistical noise (where the DL
couldn’t discriminate), such that higher mean better signal quality; essentially, optimizing to the
Certainty Score.

• Profit vs. Excursion – the return divided by Maximum Adverse Excursion (MAE), essentially the
drawdown. This is a risk-adjusted return metric using the TradePlan’s exit (unlike Next Pivot Point).

• Signal vs. Wilders Risk – based on Wells Wilder’s Average True Range (ATR) indicator, this is basically
an on-the-fly risk-adjusted return metric in a situation where calculation of longer-term metrics, like
Calmar or Sharp, is not feasible.

• OmniLanguage Formula – presents text boxes for entering a custom long/short functions.

For the Target, as an enhancement to the traditional approach of having an NN algorithm
optimize to a calculated metric such as the 1-day return, Nirvana’s DL block can optimize to the
output of an entire strategy! This is a significant advantage that I’ve not seen elsewhere and,
speaking from experience, is a grueling challenge to program outside of OT! You simply set the
Target to Strategy’s Exits. With this setting, the TradePlan determines the trade’s entry and exit
which are then used to calculate the target Y value, in contrast to a fixed N-Bar or Next-Pivot
Point exit determined without respect to the TradePlan. Other blocks such as Vote and Filter
are disregarded so that the DL will be able to train on the unfiltered signal stream.

Unlike with a TradePlan, it is perfectly acceptable to leave Next Pivot Point as the target when
creating a mechanical strategy for automated trading. (In the TradePlan block, the Next Pivot
Point can’t be determined until after it occurs so it’s only useful for discretionary trading.)

The N-bars target is intuitive and useful. You just enter the number of bars after which the
target metric will be measured.

Best Practice: When building a new strategy, I once thought it best to initially start with Next
Pivot Point or N-Bars as my optimization target. My thinking was this would allow me to refine
my inputs so that I get the best possible entries without worrying about the exits. However, I’ve
discovered that later switching to Strategy’s Exits is a really big change and a network tuned to
one target setting often doesn’t work well for another. Now, my recommendation is to start
with the target setting most appropriate for your trading style. For example, I may choose
Strategy’s Exits when building a trend-following system, maybe N-Bar for a Return-to-Mean
(RTM) approach, and perhaps Next Pivot Point for a breakout of wave-trading strategy.

The Input Grid and Feature Engineering

Feature Engineering is a tedious and time-consuming step in ML. With OmniScript and
Nirvana’s huge library of indicators, systems, and technical & fundamental metrics, this task is
greatly simplified. Still, it takes some domain knowledge and much trial & error to engineer a
highly performant set of inputs.

In the Input Grid, click the Add button to open a window where you can specify the input. It can
be a measurement (equation) which can include indicators and price/volume/fundamental
metrics, a system such as BullBear(20,20), or
a measurement that resolves to a Boolean
(true/false) value such as C/C[1]>1.1. Also, an
input can be associated with a specific
symbol, say SPY, or with the index, group,
sector, or sub-sector of the current symbol,
as the DL steps down the Focus List. If
running a list of symbols, you should
normalize so inputs are comparable across
symbols, ex., HHV/(HHV-LLV).

Once saved, you can click selectors in the grid
to change the Timeframe for an input. Current refers to the timeframe setting from the Period
Type setting (usually in the toolbar at the bottom of the OT interface), say Daily, while, say +1,
indicates the next higher-domain timeframe, say Weekly.

The Signal Column can be used to limit inputs to only longs or shorts. This is quite useful in
conjunction with input analysis, which we will discuss shortly.

The Network Training Settings

You can run the DL for long-only, short-only or both signals. Something I think may be unique to
Nirvana is the ability to run the DL against a list of symbols, generating a network that is Global
across those securities.

This creates a tradeoff. Individual networks will have fewer observations, and I find it easier to
do feature selection on a single stock, or at least a list of correlated stocks. Conversely, I find it
difficult to create good networks that include lots of non-correlated stocks in a list such as the
S&P100. Yet, diversification often does improve overall strategies if you can get high Certainty.

The DL can also use a Dynamic network design, meaning the DL will compile separate networks
at each increment of time, say quarterly, using the number of bars specified by the user up to
the end of each collection period. This has the benefit of enhancing generalizability but with the
tradeoff of a much longer run time.

With similar benefit to generalizability, the DL can use Cluster networks, creating what in ML is
called a Committee Machine. The DL generates a collection of identically sized networks,
combining their independent certainty scores for an improved prediction. As you would expect,
this also multiplies the run time.

The Data Preprocessing Settings

Warmup provides a way for the user to explicitly specify when data collection should start. For
example, you may want to set this number higher when using indicators with long lags.

Binning is only used on continuous measurements when performing Data Mining. It groups a
feature’s output into the stated number of smaller divisions. In data science, binning is
generally used to reduce the effect of minor observation errors particularly when the amount
of data is small. That’s not usually a problem with price and indicator data (as they are
continuous and voluminous), but it might be helpful for inputs generating discrete data.

The remaining settings determine how observations are scaled. Remember an NN needs the X
values to be comparable in dimension.

The Neural Network Settings

The Show Settings selector is intuitive but easy to overlook; if building a network for both longs
and shorts, you need to flip this switch and adjust this group of setting independently.

Neurons per Layer should be a comma-separated string on numbers, for example “80, 60”
would specify 80 nodes in the first hidden layer and 60 in the second. The network width
(#nodes/layer) and network depth (#layers) can make a big difference so test a few options.

In the ML world, regularization is a technique used to avoid letting a network overfit. In the DL,
regularization is implemented using dropout. Check the Dropout box then enter a comma-
separated set of number that align with the Neurons Per Layer entry. For our “80, 60” example
above, you might enter “0.2, 0.15” to randomly drop 20% of the nodes in the first layer and
15% in the second. Regularization is routinely used in ML even if already using cross-validation
as randomly removing some of the nodes forces the network to learn subtle relationships it
might not otherwise recognize.

Max Samples will limit the number of observations to be used by the network. One reason
might be to shorten processing, but generally leave this as a very high number, say “100000”.
After a run, the training summary on the initial dialog shows the Number of Collected Samples.

Best Practice: As shown in the accompany graph from one of my own experiments, a two-layer
network is far more predictable (better R-Squared) when increasing the node count than an
equally sized one-layer network. Also, note how
certainty in this two-layer network seems to
increase logarithmically with the number of nodes.

I haven’t yet tested equally sized three- or four-layer
networks. Why? In theory, a two-layer (excluding
the input & output layers) network should be able
to address any non-linear data relationships, but it
may require hundreds of nodes. A network with 20
symbols and 5collecting 6500 samples across 20
inputs theoretically might need about 750 nodes,

say split, “413, 344” over two layers (I usually set the second layer to around 80% of the first).
However, three or four layers might be more efficient so you might try several permutations. Of
note, the DL block currently only supports about 250 total nodes (depending on the number of
samples) albeit that limitation should be removed in a forthcoming software release.

The Convergence Settings

Max Iterations sets a limit on the allowed number of epochs. Unless you are doing a quick test
of some hyperparameter change, you generally want to set this number high, say 10000, and
let the DL reach convergence, usually with far fewer epochs.

You can toggle between two modes for how the DL will determine convergence:

• Use Training Samples with low/medium/high precision – this mode looks for the change between
successive epochs to be below a fixed percentage of the Certainty Score (actually, it probably uses
the MSE directly). Those exact percentages are not exposed, so I usually start with the low setting for
the shorter run time while engineering features, and then increase the precision in latter runs.

• Reserve __% of Samples for Cross-Validation – this mode reserves the stated percentage of samples
to run a separate network and plot a second Certainty line. In this instance, the network is in
convergence when the test network and the cross-validation network have both converged.

The Reserve __% of Samples to Calculate Generalization Certainty setting is like cross-validation
in that it trains another network using the specified subset of samples. The difference is it gets
reported separately on the summary window so the user can assess generalizability.

Best Practice: You always want the certainty graph to show convergence, meaning the curve
levels off indicating the MSE is approaching its minimum. All the accompanying examples below
show convergence, but the middle graph shows certainty for shorts is significantly lower (higher
MSE) than for longs; time to revisit inputs. The third example suggests the training precision
was set too low or there were insufficient samples or epochs. Try altering hyperparameters.

It is important to understand the difference between performance of the DL versus
performance of the overall strategy. When using the DL as the signal generator, I try to get
certainty above 60%, 75-85% is better; such high performance is less important when used as a
filter block. The overall strategy might still show a profitable simulation with a lower accuracy
rate but, in such case, the strategy’s performance is due to the downstream signal modifier
blocks (filters, tradeplan, etc.) more so than the DL; it raises generalizability concerns.
Conversely, a high certainty, say above 90-95%, suggests the network has overfit, which again
means the performance probably won’t be generalizable.

Examples of the Certainty Graph

Input Analysis and Pruning

After clicking the Analyze button, you can prune (delete) inputs that don’t meet certain score
thresholds. Pruning non-performant inputs may improve the DL’s performance (% Certainty)
and make the DL run faster. Be aware that an input may function differently for longs than for
shorts so be sure to analyze under both settings. Notably, the Input Table has a column labeled
Signal where you can limit an input to only longs or shorts.

HOWEVER, this approach to feature engineering is crude. Undoubtably, there will be
interactions between inputs that these graphs don’t capture. Ultimately, the best way to test
the suitability of a particular input is to repeatedly re-run the network to compare the scores
with and without that input. Obviously, this is tedious and something you should only do after
all other parameters have been finalized, and then only if you have the time to kill. In theory at
least, the Filter Settings can achieve much of the same benefit as pruning.

Best Practice: I strive to create inputs, which on the Network Range Graph, show bars that
extend above 60% or more, and ideally don’t drop much below 50%. Within that group, I may
then check the Input Sensitivity Graph on any that drop below 50% then keep only inputs
where the line sloops upward or downward as typically found
with tall bars. Such a demonstrated correlation between a
change in the input value to a change in the score suggests
that the input is effective as a predictor. A flat line suggests
the input isn’t predictive, at least not in isolation.

In the accompanying snippets from one of my runs while
building a strategy, the long-side inputs with their top score
below 60% were candidates for deleting. Input #9 is ideal
while in comparison #11 is somewhat questionable; I
therefore ran the Input Sensitivity graph to verify that input
#11 looks to be predictive and then ran a copy of my DL where
I pruned inputs 1, 3, 10, 13 and 17. I kept 5 and 6 (for both
sides) because they had sloping input ranges and were
intuitive features. Composite certainty for longs went down slightly from 64.6% to 63.9 but I got
an improvement by a factor of 6.5X in the overall strategy’s profit-per-trade, presumably by
eliminating bad trades rather than more accurate signal generation. So, I kept trying.

The Filter Settings

 For each timepoint with its set of observations (the X’s), the output (Y) from the DL is a
numeric Score, quantifying the accuracy of the network’s prediction in context of the specified
target. Filter settings allow you to specify a minimum threshold, independently for longs and
shorts, for passing the score to the next block in the strategy. You can use Nirvana’s Strategy
Wizard to optimize these settings.

Concluding Thoughts

Alluding again to my auspicious allegory in the introduction, creating an unguided rocket
booster that can land safely back on earth takes a lot more than just training a sophisticated
deep learning algorithm. Likewise, a well-trained network alone isn’t going to conquer the stock
market. But as Elon might say, it’s a
highly promising path to take. And, as
my favorite business school professor
would add, you only must be 1% better
to reap tremendous rewards.

As you may be thinking after reading
after this lengthy treatise, building a
deep learning system for algorithmic
trading can feel like rocket science, even
with the wonderful head-start provided by Nirvana’s new DL tool. But, sometimes, it’s easy. The
accompanying example shows a 15% profit improvement for a DL-enhanced strategy (purple
line). This sadly un-televised success involved nothing more than pasting a quickly trained DL
filter block into an older strategy. A nice reward for only an hour’s work!

 Here’s to hoping I’ve now impressed Elon enough to give me a few shares of SpaceX.

The Summary Window

The Settings Window

The Analyze Window

